UNIFORM FIELD FROM DISTRIBUTION OF CURRENTS ON AN ELLIPSE

S. C. Snowdon

March 27, 1968

Purpose

To determine the distribution of currents on the surface of an ellipse that will produce a uniform field within the ellipse. Extention to a gradient field is also given.

Reference

1. W. R. Smythe, Static and Dynamic Electricity, McGraw-Hill Book Co., Inc., New York (1950).

Coordinate System

Conformal transformations suggest that the variables (u,v) are useful when dealing with problems having an elliptical boundary.

$$x = a \sin u \cdot Ch \cdot v$$
 $y = a \cos u \cdot Sh \cdot v$ (1)

The factor for displacement is

$$h_x = h_y = h = a \sqrt{sh^2 v + cos^2 u}$$
 (2)

Potentials (Uniform Field)

Since one desires a uniform inside the ellipse one chooses

$$\Phi_{\tau} = -B_0 y = -B_0 a \cos u Sh v$$
 (3)

The transformation of Eq. (1), being conformal gives for the Laplace equation

$$\frac{\partial^2 \Phi}{\partial u^2} + \frac{\partial^2 \Phi}{\partial v^2} = 0. \tag{4}$$

A solution appropriate to the external region is

$$\Phi_0 = A a \cos u e^{-V}$$
 (5)

Boundary Conditions

The normal component of the flux density is continuous. This gives

$$\left(\frac{\partial V}{\partial V}\right)_{V} = V_{0} = \left(\frac{\partial V}{\partial V}\right)_{V} = V_{0} \qquad (6)$$

where from Eq. (1) $v = v_0$ is seen to generate an ellipse. Thus

$$A = B_0 e \quad Ch \quad v_0. \tag{7}$$

Applying the Ampere circuital law to a small region spanning $v=v_0$ and assuming a surface current of density σ exists on the surface gives

$$\left(H_{u0} - H_{ui}\right)_{v = v_0} \quad h \wedge u = 4 \pi \sigma h \wedge u. \text{ (emu)}$$
(8)

or

$$\sigma = \frac{1}{4\pi} \left(\frac{\partial \Phi_{1}}{\partial u} - \frac{\partial \Phi_{0}}{\partial u} \right) \quad v = v_{0}$$
 (9)

or

$$\sigma = \frac{B_0}{4\pi} \cdot e^{V_0} \cdot \frac{\sin u}{\sqrt{\sinh^2 v_0 + \cos^2 u}}$$
 (emu)

Potentials (Gradient Field)

One desires to have inside the ellipse

$$\Phi_{i} = -B'_{0}x y = -\frac{a^{2}B'_{0}}{4} \sin 2 u \sin 2 v$$
 (11)

Outside the ellipse there are no sources. Hence

$$\Phi_0 = 1/4 a^2 A \sin 2 u e^{-2v}$$
 (12)

Matching the normal fields on the elliptical boundary gives

$$A = B'_{0}e^{2v_{0}}Ch 2 v_{0}. (13)$$

The surface current density is then determined from the discontinuity in the tangential component of the field.

$$\sigma = -\frac{aB'_0}{8\pi} e^{2v_0} \frac{\cos 2u}{\sqrt{\sinh^2 v_0 + \cos^2 u}}$$
 (emu) (14)